Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Nat Commun ; 14(1): 3417, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20243574

ABSTRACT

Long COVID or post-acute sequelae of SARS-CoV-2 (PASC) is a clinical syndrome featuring diverse symptoms that can persist for months following acute SARS-CoV-2 infection. The aetiologies may include persistent inflammation, unresolved tissue damage or delayed clearance of viral protein or RNA, but the biological differences they represent are not fully understood. Here we evaluate the serum proteome in samples, longitudinally collected from 55 PASC individuals with symptoms lasting ≥60 days after onset of acute infection, in comparison to samples from symptomatically recovered SARS-CoV-2 infected and uninfected individuals. Our analysis indicates heterogeneity in PASC and identified subsets with distinct signatures of persistent inflammation. Type II interferon signaling and canonical NF-κB signaling (particularly associated with TNF), appear to be the most differentially enriched signaling pathways, distinguishing a group of patients characterized also by a persistent neutrophil activation signature. These findings help to clarify biological diversity within PASC, identify participants with molecular evidence of persistent inflammation, and highlight dominant pathways that may have diagnostic or therapeutic relevance, including a protein panel that we propose as having diagnostic utility for differentiating inflammatory and non-inflammatory PASC.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , SARS-CoV-2 , Blood Proteins , Disease Progression , Inflammation
2.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2305059

ABSTRACT

Several elements have an impact on COVID-19, including comorbidities, age and sex. To determine the protein profile changes in peripheral blood caused by a SARS-CoV-2 infection, a proximity extension assay was used to quantify 1387 proteins in plasma samples among 28 Finnish patients with COVID-19 with and without comorbidities and their controls. Key immune signatures, including CD4 and CD28, were changed in patients with comorbidities. Importantly, several unreported elevated proteins in patients with COVID-19, such as RBP2 and BST2, which show anti-microbial activity, along with proteins involved in extracellular matrix remodeling, including MATN2 and COL6A3, were identified. RNF41 was downregulated in patients compared to healthy controls. Our study demonstrates that SARS-CoV-2 infection causes distinct plasma protein changes in the presence of comorbidities despite the interpatient heterogeneity, and several novel potential biomarkers associated with a SARS-CoV-2 infection alone and in the presence of comorbidities were identified. Protein changes linked to the generation of SARS-CoV-2-specific antibodies, long-term effects and potential association with post-COVID-19 condition were revealed. Further study to characterize the identified plasma protein changes from larger cohorts with more diverse ethnicities of patients with COVID-19 combined with functional studies will facilitate the identification of novel diagnostic, prognostic biomarkers and potential therapeutic targets for patients with COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Proteomics , Antibodies, Viral , Blood Proteins , Biomarkers , Ubiquitin-Protein Ligases
3.
Xenobiotica ; 53(1): 12-24, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2261260

ABSTRACT

Plasma protein binding (PPB) studies on the SARS-CoV-2 main protease inhibitor nirmatrelvir revealed considerable species differences primarily in dog and rabbit, which prompted further investigations into the biochemical basis for these differences.The unbound fraction (fu) of nirmatrelvir in dog and rabbit plasma was concentration (2-200 µM)-dependent (dog fu,p 0.024-0.69, rabbit fu,p 0.010-0.82). Concentration (0.1-100 µM)-dependent binding in serum albumin (SA) (fu,SA 0.040-0.82) and alpha-1-acid glycoprotein (AAG) (fu,AAG 0.050-0.64) was observed in dogs. Nirmatrelvir showed minimal binding to rabbit SA (1-100 µM: fu,SA 0.70-0.79), while binding to rabbit AAG was concentration-dependent (0.1-100 µM: fu,AAG 0.024-0.66). In contrast, nirmatrelvir (2 µM) revealed minimal binding (fu,AAG 0.79-0.88) to AAG from rat and monkeys. Nirmatrelvir showed minimal-to-moderate binding to SA (1-100 µM; fu,SA 0.70-1.0) and AAG (0.1-100 µM; fu,AAG 0.48-0.58) from humans across tested concentrations.Nirmatrelvir molecular docking studies using published crystal structures and homology models of human and preclinical species SA and AAG were used to rationalise the species differences to plasma proteins. This suggested that species differences in PPB are primarily driven by molecular differences in albumin and AAG resulting in differences in binding affinity.


Subject(s)
Anti-Infective Agents , COVID-19 , Rats , Humans , Animals , Dogs , Rabbits , Protein Binding , SARS-CoV-2/metabolism , Protease Inhibitors , Species Specificity , Molecular Docking Simulation , Blood Proteins/metabolism , Serum Albumin/metabolism , Orosomucoid/metabolism , Antiviral Agents , Enzyme Inhibitors
4.
EBioMedicine ; 90: 104538, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2266934

ABSTRACT

BACKGROUND: Mechanisms contributing to COVID-19 severity in people with HIV (PWH) are poorly understood. We evaluated temporal changes in plasma proteins following SARS-CoV-2 infection and identified pre-infection proteomic markers associated with future COVID-19. METHODS: We leveraged data from the global Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE). Antiretroviral therapy (ART)-treated PWH with clinical, antibody-confirmed COVID-19 as of September 2021 were matched on geographic region, age, and sample timing to antibody negative controls. For cases and controls, pre COVID-19 pandemic specimens were obtained prior to January 2020 to assess change over time and relationship to COVID-19 severity, using false-discovery adjusted mixed effects modeling. FINDINGS: We compared 257 unique plasma proteins in 94 COVID-19 antibody-confirmed clinical cases and 113 matched antibody-negative controls, excluding COVID-19 vaccinated participants (age 50 years, 73% male). 40% of cases were characterized as mild; 60% moderate to severe. Median time from COVID-19 infection to follow-up sampling was 4 months. Temporal patterns of protein changes differed based on COVID-19 disease severity. Among those experiencing moderate to severe disease vs. controls, NOS3 increased whereas ANG, CASP-8, CD5, GZMH, GZMB, ITGB2, and KLRD1 decreased. Higher pre-pandemic levels of granzymes A, B and H (GZMA, GZMB and GZMH) were associated with the future development of moderate-severe COVID-19 and were related to immune function. INTERPRETATION: We identified temporal changes in proteins closely linked to inflammatory, immune, and fibrotic pathways which may relate to COVID-19-related morbidity among ART-treated PWH. Further we identified key granzyme proteins associated with future COVID-19 in PWH. FUNDING: This study is supported through NIH grants U01HL123336, U01HL123336-06 and 3U01HL12336-06S3, to the clinical coordinating center, and U01HL123339, to the data coordinating center as well as funding from Kowa Pharmaceuticals, Gilead Sciences, and a grant award through ViiV Healthcare. The NIAID supported this study through grants UM1 AI068636, which supports the AIDS Clinical Trials Group (ACTG) Leadership and Operations Center, and UM1 AI106701, which supports the ACTG Laboratory Center. This work was also supported by NIAID through grant K24AI157882 to MZ. The work of IS was supported by the intramural research program of NIAID/NIH.


Subject(s)
COVID-19 , Male , Humans , Middle Aged , Female , SARS-CoV-2 , Pandemics/prevention & control , Proteomics , Blood Proteins , Antibodies, Viral , Anti-Retroviral Agents
5.
Adv Colloid Interface Sci ; 314: 102870, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2275378

ABSTRACT

Drying of biologically-relevant sessile droplets, including passive systems such as DNA, proteins, plasma, and blood, as well as active microbial systems comprising bacterial and algal dispersions, has garnered considerable attention over the last decades. Distinct morphological patterns emerge when bio-colloids undergo evaporative drying, with significant potential in a wide range of biomedical applications, spanning bio-sensing, medical diagnostics, drug delivery, and antimicrobial resistance. Consequently, the prospects of novel and thrifty bio-medical toolkits based on drying bio-colloids have driven tremendous progress in the science of morphological patterns and advanced quantitative image-based analysis. This review presents a comprehensive overview of bio-colloidal droplets drying on solid substrates, focusing on the experimental progress during the last ten years. We provide a summary of the physical and material properties of relevant bio-colloids and link their native composition (constituent particles, solvent, and concentrations) to the patterns emerging due to drying. We specifically examined the drying patterns generated by passive bio-colloids (e.g., DNA, globular, fibrous, composite proteins, plasma, serum, blood, urine, tears, and saliva). This article highlights how the emerging morphological patterns are influenced by the nature of the biological entities and the solvent, micro- and global environmental conditions (temperature and relative humidity), and substrate attributes like wettability. Crucially, correlations between emergent patterns and the initial droplet compositions enable the detection of potential clinical abnormalities when compared with the patterns of drying droplets of healthy control samples, offering a blueprint for the diagnosis of the type and stage of a specific disease (or disorder). Recent experimental investigations of pattern formation in the bio-mimetic and salivary drying droplets in the context of COVID-19 are also presented. We further summarized the role of biologically active agents in the drying process, including bacteria, algae, spermatozoa, and nematodes, and discussed the coupling between self-propulsion and hydrodynamics during the drying process. We wrap up the review by highlighting the role of cross-scale in situ experimental techniques for quantifying sub-micron to micro-scale features and the critical role of cross-disciplinary approaches (e.g., experimental and image processing techniques with machine learning algorithms) to quantify and predict the drying-induced features. We conclude the review with a perspective on the next generation of research and applications based on drying droplets, ultimately enabling innovative solutions and quantitative tools to investigate this exciting interface of physics, biology, data sciences, and machine learning.


Subject(s)
COVID-19 , Male , Humans , COVID-19/diagnosis , Colloids/chemistry , Drug Delivery Systems , Solvents , Blood Proteins
6.
Front Immunol ; 13: 1037115, 2022.
Article in English | MEDLINE | ID: covidwho-2278618

ABSTRACT

Background: Clara cell 16 kDa protein (CC16) is a secretory protein primarily expressed in epithelial cells in the lungs. Previous studies show that CC16 exerts anti-inflammatory and immune-modulatory properties in both acute and chronic pulmonary diseases. However, despite the evidence of CC16's high biomarker potential, evaluation of its role in infectious diseases is yet very limited. Methods: Serum CC16 concentrations were measured by ELISA and assessed in two different types of severe infections. Using a case-control study design, patients treated for either severe SARS-CoV-2 or severe non-pulmonary sepsis infection were compared to age- and sex-matched healthy human subjects. Results: Serum CC16 was significantly increased in both types of infection (SARS-CoV-2: 96.22 ± 129.01 ng/ml vs. healthy controls: 14.05 ± 7.48 ng/ml, p = 0.022; sepsis: 35.37 ± 28.10 ng/ml vs. healthy controls: 15.25 ± 7.51 ng/ml, p = 0.032) but there were no distinct differences between infections with and without pulmonary focus (p = 0.089). Furthermore, CC16 serum levels were positively correlated to disease duration and inversely to the platelet count in severe SARS-CoV-2 infection. Conclusions: Increased CC16 serum levels in both SARS-CoV-2 and sepsis reinforce the high potential as a biomarker for epithelial cell damage and bronchoalveolar-blood barrier leakage in pulmonary as well as non-pulmonary infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , Sepsis , Humans , Biomarkers , Blood Proteins/metabolism , Case-Control Studies , Communicable Diseases/metabolism , Epithelial Cells/metabolism , Research Report , SARS-CoV-2 , Sepsis/metabolism , Uteroglobin/metabolism
7.
Mol Biol Rep ; 50(4): 3241-3248, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2220148

ABSTRACT

AIM: The current study aimed to evaluate the effects of caspase-8 (CASP8) and mitogen-activated protein kinase 1 (MAPK1) gene expression levels and their products on preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: A total of 40 patients (men, 15 [37.5%]; women, 25 [62.5%]) with COVID-19 infection were included in the current study. The patients were divided into four main groups based on disease severity: mild (n = 7), moderate (n = 10), severe (n = 14), and critical (n = 9). Individuals aged < 18 years and pregnant women were excluded. Patients were classified according to the World Health Organization (WHO) classification system (WHO/2019-nCoV/clinical/2021.1). RESULTS: Considering all groups, statistically significant differences were detected among all groups for both CASP82-ΔΔCt (p = 0.006) and MAPK1 2-ΔΔCt values (p = 0.015). Moreover, statistically significant differences were detected between mild and moderate (p = 0.013), moderate and critical (p = 0.018), and severe and critical (p = 0.023) groups for lymphocytes. CONCLUSION: The CASP8/MAPK1 expression levels and/or its products are essential in preventing injury caused by COVID-19 infection. They play crucial roles in maintaining cellular homeostasis and viability. Furthermore, CASP8/MAPK1 levels can provide information about disease severity.


Subject(s)
COVID-19 , Male , Humans , Female , Pregnancy , COVID-19/genetics , SARS-CoV-2 , Caspase 8/genetics , Mitogen-Activated Protein Kinase 1 , Blood Proteins
8.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: covidwho-2225333

ABSTRACT

There are a number of uncertainties regarding plasma protein binding and blood distribution of the active drugs favipiravir (FAVI), molnupiravir (MOLNU) and imatinib (IMA), which were recently proposed as therapeutics for the treatment of COVID-19 disease. Therefore, proton dissociation processes, solubility, lipophilicity, and serum protein binding of these three substances were investigated in detail. The drugs display various degrees of lipophilicity at gastric (pH 2.0) and blood pH (pH 7.4). The determined pKa values explain well the changes in lipophilic character of the respective compounds. The serum protein binding was studied by membrane ultrafiltration, frontal analysis capillary electrophoresis, steady-state fluorometry, and fluorescence anisotropy techniques. The studies revealed that the ester bond in MOLNU is hydrolyzed by protein constituents of blood serum. Molnupiravir and its hydrolyzed form do not bind considerably to blood proteins. Likewise, FAVI does not bind to human serum albumin (HSA) and α1-acid glycoprotein (AGP) and shows relatively weak binding to the protein fraction of whole blood serum. Imatinib binds to AGP with high affinity (logK' = 5.8-6.0), while its binding to HSA is much weaker (logK' ≤ 4.0). The computed constants were used to model the distribution of IMA in blood plasma under physiological and 'acute-phase' conditions as well.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protein Binding , Imatinib Mesylate/pharmacology , SARS-CoV-2/metabolism , Blood Proteins/metabolism , Orosomucoid/metabolism , Serum Albumin, Human/metabolism , Plasma/metabolism
9.
Biologicals ; 79: 27-30, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2220468

ABSTRACT

This document provides a commentary and further elaboration on the conclusions reached during a recent international workshop on plasma protein therapies organized by the Working Party for Global Safety of the International Society of Blood Transfusion (ISBT). The workshop addressed the profound deficiency in access to safe plasma protein therapies that persists in low- and middle-income countries (LMICs). We provide additional factual economic and technological information that highlights why local production of small-scale virus-inactivated concentrates of clotting factors and immune globulins from domestic recovered plasma through stepwise introduction of available validated technologies is a pragmatic approach to gradually improve the care of patients with bleeding disorders and immune deficiencies in LMIC while supporting progress toward fractionation of plasma. This strategy is in line with a recent WHO guidance. We stress that the active involvement of international blood donor and blood transfusion organizations, patient organizations, governments and industry will be essential in supporting stepwise and sustainable improvements in access to safe, effective, and quality assured plasma protein therapies.


Subject(s)
Blood Proteins , Developing Countries , Blood Coagulation Factors , Blood Transfusion , Humans , Plasma
11.
Front Immunol ; 13: 931210, 2022.
Article in English | MEDLINE | ID: covidwho-2065505

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) an important form of a thrombotic microangiopathy (TMA) that can frequently lead to acute kidney injury (AKI). An important subset of aHUS is the anti-factor H associated aHUS. This variant of aHUS can occur due to deletion of the complement factor H genes, CFHR1 and CFHR3, along with the presence of anti-factor H antibodies. However, it is a point of interest to note that not all patients with anti-factor H associated aHUS have a CFHR1/R3 deletion. Factor-H has a vital role in the regulation of the complement system, specifically the alternate pathway. Therefore, dysregulation of the complement system can lead to inflammatory or autoimmune diseases. Patients with this disease respond well to treatment with plasma exchange therapy along with Eculizumab and immunosuppressant therapy. Anti-factor H antibody associated aHUS has a certain genetic predilection therefore there is focus on further advancements in the diagnosis and management of this disease. In this article we discuss the baseline characteristics of patients with anti-factor H associated aHUS, their triggers, various treatment modalities and future perspectives.


Subject(s)
Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , Complement System Proteins , Acute Kidney Injury/genetics , Acute Kidney Injury/immunology , Acute Kidney Injury/therapy , Antibodies/genetics , Antibodies/immunology , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/therapy , Blood Proteins/genetics , Complement C3b Inactivator Proteins/genetics , Complement Factor H/antagonists & inhibitors , Complement Factor H/genetics , Complement Factor H/immunology , Complement System Proteins/genetics , Complement System Proteins/immunology , Humans , Plasma Exchange
12.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: covidwho-2023945

ABSTRACT

Exosomes are small extracellular vesicles with a variable protein cargo in consonance with cell origin and pathophysiological conditions. Gestational diabetes mellitus (GDM) is characterized by different levels of chronic low-grade inflammation and vascular dysfunction; however, there are few data characterizing the serum exosomal protein cargo of GDM patients and associated signaling pathways. Eighteen pregnant women were enrolled in the study: 8 controls (CG) and 10 patients with GDM. Blood samples were collected from patients, for exosomes' concentration. Protein abundance alterations were demonstrated by relative mass spectrometric analysis and their association with clinical parameters in GDM patients was performed using Pearson's correlation analysis. The proteomics analysis revealed 78 significantly altered proteins when comparing GDM to CG, related to complement and coagulation cascades, platelet activation, prothrombotic factors and cholesterol metabolism. Down-regulation of Complement C3 (C3), Complement C5 (C5), C4-B (C4B), C4b-binding protein beta chain (C4BPB) and C4b-binding protein alpha chain (C4BPA), and up-regulation of C7, C9 and F12 were found in GDM. Our data indicated significant correlations between factors involved in the pathogenesis of GDM and clinical parameters that may improve the understanding of GDM pathophysiology. Data are available via ProteomeXchange with identifier PXD035673.


Subject(s)
Diabetes, Gestational , Exosomes , Blood Proteins/metabolism , Complement C4b-Binding Protein/metabolism , Complement System Proteins/metabolism , Exosomes/metabolism , Female , Humans , Lipid Metabolism , Pregnancy , Proteomics/methods
13.
Biomark Med ; 16(13): 981-991, 2022 09.
Article in English | MEDLINE | ID: covidwho-2009811

ABSTRACT

Aim: The study investigated heparin-binding protein (HBP) levels in patients with severe COVID-19 pneumonia and their relation to prognosis. Methods: A total of 134 patients with serious COVID-19 pneumonia were prospectively analyzed. HBP levels were statistically compared between both the patient and healthy control groups and within the patient group itself. Results: HBP was defined to be significantly higher in the patient group compared with the control group. There was a statistically significant distinction between the patients who survived and those who died with regard to HBP levels. When the cutoff value of HBP was >13.47, sensitivity (89.8%), specificity (74.1%) had area under the curve values of 0.806 (p < 0.001). Conclusion: HBP level may be used for prognosis prediction of patients with COVID-19.


Subject(s)
COVID-19 , Antimicrobial Cationic Peptides/metabolism , Biomarkers , Blood Proteins/metabolism , Humans , Prognosis
14.
Sci Rep ; 12(1): 14049, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-1991667

ABSTRACT

Even before the COVID-19 pandemic declines in life expectancy in the United States were attributed to increased mortality rates in midlife adults across racial and ethnic groups, indicating a need for markers to identify individuals at risk for early mortality. Extracellular vesicles (EVs) are small, lipid-bound vesicles capable of shuttling functional proteins, nucleic acids, and lipids. Given their role as intercellular communicators and potential biomarkers of disease, we explored whether circulating EVs may be markers of mortality in a prospective, racially, and socioeconomically diverse middle-aged cohort. We isolated plasma EVs from 76 individuals (mean age = 59.6 years) who died within a 5 year period and 76 surviving individuals matched by age, race, and poverty status. There were no significant differences in EV concentration, size, or EV-associated mitochondrial DNA levels associated with mortality. We found that several EV-associated inflammatory proteins including CCL23, CSF-1, CXCL9, GDNF, MCP-1, STAMBP, and 4E-BP1 were significantly associated with mortality. IL-10RB and CDCP1 were more likely to be present in plasma EVs from deceased individuals than in their alive counterparts. We also report differences in EV-associated inflammatory proteins with poverty status, race, and sex. Our results suggest that plasma EV-associated inflammatory proteins are promising potential clinical biomarkers of mortality.


Subject(s)
COVID-19 , Extracellular Vesicles , Adult , Antigens, Neoplasm/metabolism , Biomarkers , Blood Proteins/metabolism , Cell Adhesion Molecules/metabolism , Extracellular Vesicles/metabolism , Humans , Middle Aged , Pandemics , Prospective Studies
15.
PLoS One ; 17(8): e0272572, 2022.
Article in English | MEDLINE | ID: covidwho-1987158

ABSTRACT

BACKGROUND: Venous phlebotomy performed by trained personnel is critical for patient diagnosis and monitoring of chronic disease, but has limitations in resource-constrained settings, and represents an infection control challenge during outbreaks. Self-collection devices have the potential to shift phlebotomy closer to the point of care, supporting telemedicine strategies and virtual clinical trials. Here we assess a capillary blood micro-sampling device, the Tasso Serum Separator Tube (SST), for measuring blood protein levels in healthy subjects and non-hospitalized COVID-19 patients. METHODS: 57 healthy controls and 56 participants with mild/moderate COVID-19 were recruited at two U.S. military healthcare facilities. Healthy controls donated Tasso SST capillary serum, venous plasma and venous serum samples at multiple time points, while COVID-19 patients donated a single Tasso SST serum sample at enrolment. Concentrations of 17 protein inflammatory biomarkers were measured in all biospecimens by Ella multi-analyte immune-assay. RESULTS: Tasso SST serum protein measurements in healthy control subjects were highly reproducible, but their agreements with matched venous samples varied. Most of the selected proteins, including CRP, Ferritin, IL-6 and PCT, were well-correlated between Tasso SST and venous serum with little sample type bias, but concentrations of D-dimer, IL-1B and IL-1Ra were not. Self-collection at home with delayed sample processing was associated with significant concentrations differences for several analytes compared to supervised, in-clinic collection with rapid processing. Finally, Tasso SST serum protein concentrations were significantly elevated in in non-hospitalized COVID-19 patients compared with healthy controls. CONCLUSIONS: Self-collection of capillary blood with micro-sampling devices provides an attractive alternative to routine phlebotomy. However, concentrations of certain analytes may differ significantly from those in venous samples, and factors including user proficiency, temperature control and time lags between specimen collection and processing need to be considered for their effect on sample quality and reproducibility.


Subject(s)
COVID-19 , Blood Proteins , Blood Specimen Collection , COVID-19/diagnosis , Healthy Volunteers , Humans , Reproducibility of Results , Specimen Handling
16.
Cytokine ; 158: 155970, 2022 10.
Article in English | MEDLINE | ID: covidwho-1966480

ABSTRACT

BACKGROUND: There are no major tools that could predict disease severity in COVID-19. The aim of this study is to evaluate if serum galectin-3 levels can identify disease progression in COVID-19. METHODS: Patients that were hospitalized due to COVID-19 between March and June 2020 were included in this cross-sectional prospective study. Baseline demographic and clinical data in addition to levels of serum parameters including galectin-3 were measured at the time of hospital admission. Patients with COVID-19 were categorized into two groups (non-severe and severe illness). The need for ICU during hospital stay, duration from hospital admission to the transfer to the ICU, and the total length of hospital stay were recorded. RESULTS: A total of 175 patients were included in the study and among these, 64 patients formed the severe illness group whereas 111 comprised the non-severe illness group. There was statistically significant difference in terms of galectin-3 levels between groups (1.07 ± 0.75 vs 0.484 ± 0.317, p < 0.0001, respectively). Our results showed that galectin-3, IL-6 and CRP levels at admission were independent risk factors associated with transfer to the ICU whereas only galectin-3 was an independent factor for the need for advanced ventilatory support. Also, galectin-3 and IL-6 were independent risk factors related to in-hospital mortality. CONCLUSION: In conclusion, our results indicated that galectin-3 had moderate power in outlining disease severity and the need for ICU transfer throughout the clinical course in COVID-19.


Subject(s)
COVID-19 , Galectins/blood , Blood Proteins , Cross-Sectional Studies , Galectin 3 , Hospitalization , Humans , Intensive Care Units , Interleukin-6 , Prognosis , Prospective Studies , Retrospective Studies
17.
Methods Mol Biol ; 2511: 183-200, 2022.
Article in English | MEDLINE | ID: covidwho-1941376

ABSTRACT

Blood serum or plasma proteins are potentially useful in COVID-19 research as biomarkers for risk prediction, diagnosis, stratification, and treatment monitoring. However, serum protein-based biomarker identification and validation is complicated due to the wide concentration range of these proteins, which spans more than ten orders of magnitude. Here we present a combined affinity purification-liquid chromatography mass spectrometry approach which allows identification and quantitation of the most abundant serum proteins along with the nonspecifically bound and interaction proteins. This led to the reproducible identification of more than 100 proteins that were not specifically targeted by the affinity column. Many of these have already been implicated in COVID-19 disease.


Subject(s)
COVID-19 , Serum , Biomarkers , Blood Proteins/chemistry , COVID-19/diagnosis , Chromatography, Affinity/methods , Chromatography, Liquid/methods , Humans , Serum/chemistry , Tandem Mass Spectrometry/methods
18.
Sci Rep ; 12(1): 640, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1900548

ABSTRACT

COVID-19 pathophysiology is currently not fully understood, reliable prognostic factors remain elusive, and few specific therapeutic strategies have been proposed. In this scenario, availability of biomarkers is a priority. MS-based Proteomics techniques were used to profile the proteome of 81 plasma samples extracted in four consecutive days from 23 hospitalized COVID-19 associated pneumonia patients. Samples from 10 subjects that reached a critical condition during their hospital stay and 10 matched non-severe controls were drawn before the administration of any COVID-19 specific treatment and used to identify potential biomarkers of COVID-19 prognosis. Additionally, we compared the proteome of five patients before and after glucocorticoids and tocilizumab treatment, to assess the changes induced by the therapy on our selected candidates. Forty-two proteins were differentially expressed between patients' evolution groups at 10% FDR. Twelve proteins showed lower levels in critical patients (fold-changes 1.20-3.58), of which OAS3 and COG5 found their expression increased after COVID-19 specific therapy. Most of the 30 proteins over-expressed in critical patients (fold-changes 1.17-4.43) were linked to inflammation, coagulation, lipids metabolism, complement or immunoglobulins, and a third of them decreased their expression after treatment. We propose a set of candidate proteins for biomarkers of COVID-19 prognosis at the time of hospital admission. The study design employed is distinctive from previous works and aimed to optimize the chances of the candidates to be validated in confirmatory studies and, eventually, to play a useful role in the clinical practice.


Subject(s)
Blood Proteins , COVID-19/blood , COVID-19/diagnosis , Hospitalization , Aged , Aged, 80 and over , Biomarkers/blood , Disease Progression , Female , Humans , Male , Mass Spectrometry , Middle Aged , Prospective Studies , Proteome
19.
J Pharmacol Sci ; 150(1): 9-20, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1885946

ABSTRACT

In 2016, sepsis was newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis remains one of the crucial medical problems to be solved worldwide. Although the world health organization has made sepsis a global health priority, there remain no specific and effective therapy for sepsis so far. Indeed, over the previous decades almost all attempts to develop novel drugs have failed. This may be partly ascribable to the multifactorial complexity of the septic cascade and the resultant difficulties of identifying drug targets. In addition, there might still be missing links among dysregulated host responses in vital organs. In this review article, recent advances in understanding of the complex pathophysiology of sepsis are summarized, with a focus on neutrophil extracellular traps (NETs), the significant role of NETs in thrombosis/embolism, and the functional roles of plasma proteins, histidine-rich glycoprotein (HRG) and inter-alpha-inhibitor proteins (IAIPs). The specific plasma proteins that are markedly decreased in the acute phase of sepsis may play important roles in the regulation of blood cells, vascular endothelial cells and coagulation. The accumulating evidence may provide us with insights into a novel aspect of the pathophysiology of sepsis and septic ARDS, including that in COVID-19.


Subject(s)
COVID-19 , Extracellular Traps , Sepsis , Blood Proteins/metabolism , Endothelial Cells/metabolism , Extracellular Traps/metabolism , Glycoproteins/metabolism , Humans , Neutrophils
20.
Nat Commun ; 12(1): 6073, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1860369

ABSTRACT

Large-scale profiling of intact glycopeptides is critical but challenging in glycoproteomics. Data independent acquisition (DIA) is an emerging technology with deep proteome coverage and accurate quantitative capability in proteomics studies, but is still in the early stage of development in the field of glycoproteomics. We propose GproDIA, a framework for the proteome-wide characterization of intact glycopeptides from DIA data with comprehensive statistical control by a 2-dimentional false discovery rate approach and a glycoform inference algorithm, enabling accurate identification of intact glycopeptides using wide isolation windows. We further utilize a semi-empirical spectrum prediction strategy to expand the coverage of spectral libraries of glycopeptides. We benchmark our method for N-glycopeptide profiling on DIA data of yeast and human serum samples, demonstrating that DIA with GproDIA outperforms the data-dependent acquisition-based methods for glycoproteomics in terms of capacity and data completeness of identification, as well as accuracy and precision of quantification. We expect that this work can provide a powerful tool for glycoproteomic studies.


Subject(s)
Glycopeptides/analysis , Proteome/analysis , Proteomics/methods , Algorithms , Blood Proteins/chemistry , Glycoproteins/chemistry , Humans , Mass Spectrometry , Polysaccharides/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL